Mark Scheme - 1.6 The Periodic Table

4	

(a)	(i)	Energy required to remove one mole of electrons from one mole of atoms / to form one mole of positive ions from one mole of atoms (1) in the gaseous state (to form 1 mol of gaseous ions) (1)			
		(Accept correct equation)	[2]		
	(ii)	Cross between Na and Mg crosses	[1]		
	(iii)	P only has unpaired electrons, S has a pair of electrons in 3p orbital (1)			
		Repulsion between the paired electrons makes it easier to remo one of the electrons (1)	ve [2]		
(b)	(i)	Effective nuclear charge is greater / electron being removed from positive ion	n a [1]		
	(ii)	Accept from 6000 to 9000	[1]		
(c)	energ Fallin	s are formed from electron being excited and jumping up to a higher gy level (1) ng back down to the n = 2 level (1)	r		
	Lines	ting energy / photon of light (1) s become closer since the electron energy levels of a hydrogen atom me closer (1)	m [4]		
		QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]			
	COIII	plexity of subject matter	[1]		
		Tot	al [12]		

(a)	same	number of protons and electrons (1)	
	0, 1 ar	nd 2 neutrons (1)	[2]
(b)	(i)	3 energy levels between $n=2$ and $n=\infty$ becoming closer together first gap must be < that between $n=1$ and $n=2$	[1]
	(ii)	any arrow pointing upwards (1)	
		from $n = 1$ to $n = \infty$ (1)	[2]
(c)	(i)	visible	[1]
	(ii)	(not correct because) Balmer series corresponds to energy trans involving n = 2 (1)	itions
		for ionisation energy need Lyman series / energy transitions invo $n=1 \ (1)$	lving [2]
(d)	(i)	$Q(g) \rightarrow Q^{+}(g) + e / accept any symbol$	[1]
	(ii)	Group 6	[1]
	(iii)	In T there is more shielding (1)	
		The outer electron is further from the nucleus (1)	
		The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1)	[3]
		Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning QWC	[1]
		Tota	al [14]

(a)	disso	pling bottle would not have been washed / diffic plve solid in volumetric flask / final volume would		8704
	nece	ssarily be 250 cm ³		[1]
(b)	Pipe	tte		[1]
(c)	To show the end point / when to stop adding acid / when it's neutralised			[1]
(d)	So that a certain volume of acid can be added quickly before adding drop by drop / to save time before doing accurate titrations / to give a rough idea of the end point			
(e)	Тоо	btain a more reliable value		[1]
(f)	(i)	Moles = 0.730/36.5 = 0.0200	(1)	
		Concentration = 0.02/0.1 = 0.200 mol dm ⁻³	(1)	[2]
	(ii)	Moles = 0.2 x 0.0238 = 0.00476		[1]
	(iii)	0.00476		[1]
	(iv)	$0.00476 \times 10 = 0.0476$		[1]
	(v)	$M_r = 1.14/0.0476 = 23.95$		[1]
	(vi)	Lithium		[1]
		 mark consequentially throughout (f) 		
			Tota	l [12]

nitrogen / phosphorus (or any other Group 5 element) [1] 5. (a) Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation - do not accept CFCs [1] (i) $K_c = \frac{[HI]^2}{[H_2][I_2]}$ must be square brackets (b) [1] $K_c = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-3}$ (ii) follow through error (ft) [1] K_c has no units ft (iii) [1] when temperature increases K_c increases (1) (iv) this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1) therefore ΔH for forward reaction is +ve (1) (mark only awarded if marking point 2 given) [3] +2 (c) (i) [1] (ii) co-ordinate/ dative (covalent) [1] pink is [Co(H₂O)₆]²⁺ and blue is [CoCl₄]²⁻ (1) (iii) (ligand is) Cl (1) (addition of HCl sends) equilibrium to RHS (1) [3] [Co(H₂O)₆]²⁺ shown as octahedral [with attempt at 3D] (1) (iv) [CoCl₄]²⁻ shown as tetrahedral/ square planar (1) [2]

Total [14]

6.

```
Number of moles of HCI = 80 \times 0.20 = 0.016 (1)
(a)
      (i)
              Number of moles of calcium needed = 0.008 (1)
             Number of moles of calcium actually used = 0.40 = \sim 0.010 (1)
             (:: calcium is present in excess)
             [Calculation could be carried out in grams]
                                                                            [3]
       (ii)
              gas bubbles / effervescence / some calcium 'dissolves' /
              colourless solution produced
                                                                            [1]
(b)
      Mass of E in solution at 0 °C = 0.13 \times 2 = 0.26 g (1)
      :. Quantity precipitated = 1.50 - 0.26 = 1.24 g (1)
                                                                            [2]
(c)
      (i)
              Brick red / orange-red
                                                                            [1]
       (ii)
              Cream predipitate (accept off-white predipitate)
                                                                            [1]
             Ag + Br → AgBr
       (iii)
                                                                            [1]
       (iv)
              Red / brown solution
                                                                            [1]
              Calcium bromide is an ionic compound (1)
       (v)
              and contains Ca2+ and Br ions (1)
              Chlorine reacts with the bromide ions in a redox/
              displacement reaction (1)
              Chlorine is a more powerful oxidising agent/has a greater affinity for
              electrons than bromine (1)
             2Br + Cl<sub>2</sub> → Br<sub>2</sub> + 2Cl (1)
                                                                            [5]
       QWC: ensure that text is legible and that spelling, punctuation and
               grammar are accurate so that the meaning is clear
                                                                            [1]
```

Total [16]

7.	(a)	(i)		magnesium nitrate	barium chloride	sodium hydroxide
			potassium carbonate	white precipitate	white precipitate	no visible change
			sodium	WHITE	NO VISIBLE	
			hydroxide	PRECIPITATE	CHANGE	
			barium chloride	NO VISIBLE CHANGE		
			All three correct fo	r 2 marks, two co	orrect for 1 mark	[2]
		(ii)	Name of precipitat Ionic equation: Mg			[2]
	(b)	(i)	Sodium hydroxide [Ignore references		The state of the s	[1]
		(ii)	Potassium carboni Sodium hydroxide Barium chloride wo (2 for all correct, 1	would give a gol ould give an appl	den yellow flame e green flame	
		····	1 max if any refere		Charles and the second second second	[2]
		(iii)	Barium chloride (1)	White precipita	ite (1)	[2]
	(c)	(i)	Bromide ions surro Marks can be obta	ounded by 8+ on ined from a label	oxygen atoms of wa hydrogen atoms of led diagram – must und sodium/bromide	water (1) show minimum
		(ii)	Observation with s	odium bromide	cream precipitate	(1)
			Observation with s	odium iodide	yellow precipitate	(1) [2]
		(iii)	Reagent: (dilute) a Observation with s Observations with both observations [If concentrated an	change de		
			WIII GISSOIV	e completely]		[2]
		(iv)	2Nal + Br ₂ → 2NaE	Br + I₂ allow	ionic equation	[1]

Total [16]

8.

[1]

[1]

[1]

[1]

- (c) (i) Atoms are hit by an electron beam / electrons fired from an electron gun (and lose electrons) [1]
 - (ii) To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field - no credit for 'so that atoms can be deflected...'

[1]

(d)

1s

2s

2p

3s

3р

 $\downarrow \uparrow$

8 0 - 3

[1]

(e) (i)
$$Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$$
 [1]

moles $Mg_3N_2 = 0.0100$ (1)

mass
$$Mg_3N_2 = 0.01 \times 100.9 = 1.01 g (1)$$
 [3]

- must be 3 significant figures to gain third mark

Total [14]

9.	(a)	And the second second	s in which reaction can occur, e.g. flask/ test tube, and rubber tube (1)	
			s in which to measure volume of gas, e.g. over water wit g cylinder/ gas syringe (1)	h [2]
	(b)	(i) fev	ver moles of barium used / barium has a higher A _r	[1]
		* *	action faster/ more vigorous/ less cloudy solution formed rium (1)	with
		ea	cause ionisation energy of barium is less/ electrons lost sily from barium/ barium is lower in the group/ rium hydroxide is more soluble (1)	more [2]
	(c)	flame test	t (1) brick red for calcium and (apple) green for barium	(1)
		OR		
		add sulfu	ric acid/ sodium sulfate solution/ potassium sulfate soluti	on (1)
		white pre	cipitate with Ba ²⁺ , less precipitate/ no precipitate with Ca	²⁺ (1) [2]
	(d)	electrons	correct – oxide ion clearly shows that 2 electrons original from calcium atom (1)	ated
		charges o	correct (1)	[2]
	(e)		dd sulfuric acid/ sodium sulfate solution/ potassium sulfat lution (1)	te
		filte	er (1)	
		Ba	²⁺ + SO ₄ ²⁻ → BaSO ₄ (1) - state symbols ignored	[3]
		(ii) mo	oles Ba = 2/137 (1)	
		ma	ass BaSO ₄ = <u>2 x 233.1</u> = 3.4 (g) (1) 137	[2]

Total [14]

(a)	(i)	Potassium bursts into flames sodium does not / potassium darts a surface more vigorously than sodium	about [1]
	(ii)	$1^{\rm st}$ ionisation energy decreases as group is descended / as ele has higher $A_{\rm r}$ (1)	ment
		(Atom) becomes larger / outer electron further from nucleus / more shielding / less effective nuclear charge (1)	[2]
	(iii)	As group descended outer electron more easily lost	[1]
(b)	(i)	Electronegativity (difference between the atoms) (1)	
		The bigger the difference the more likely is an ionic bond / OR covalent (1)	A for [2]
	(ii)	Ionic: high electron density centred round ions / shown on diagran	n (1)
		Covalent: high electron density between nuclei/atoms / show diagram (1)	n on
		Intermediate: high electron density between nuclei/atoms but h nearer one of them / ions with electron distortion of negative ion (1	
(c)	(i)	Calcium	[1]
	(ii)	Calcium chloride/ CaCl2 – error carried forward (ecf) from (i)	[1]
	(iii)	White precipitate/ solid – ecf from (i)	[1]
	(iv)	$Ca^{2+} + 2OH^{-} \rightarrow Ca(OH)_{2}$ (ignore state symbols) – ecf from (i)	[1]
		Penalise incorrect metal once only in (c)	
		Total	[13]